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Abstract

We test a theory that provides a simple and robust link betwearket prices of credit default swaps
(CDS) and equity options. The theory links the CDS spreati¢atarket prices of vertical spreads of Amer-
ican put options which are sufficiently out-of-the-moneyeTinkage is established under a general class of
stock price dynamics for which the default event affects/dhk state space in which stock prices evolve.
Specifically, stock prices are assumed to be bounded bel@bbyrierB > 0 strictly before the default event,
and to drop below an alternative barrigr< B at the default time. We allow random stock price evolution
after default, so long as it is bounded abovefye suppose that investors can take a static position in at
least two co-terminal American put options struck withie tfefault corridoffA, B]. We show that a vertical
spread of such options scaled by the spread between therthesseplicates a standardized credit insurance
contract that pays one dollar at default whenever the coyndefaults prior to the option expiry and zero
otherwise. Given the above state space behavior, we showhibaimple replicating strategy is robust to the
details of the pre-default stock price dynamics, the pestat stock price dynamics, interest rate dynamics,
and default arrival rate fluctuations. We use the value oftimerican put spread to infer risk-neutral default
probabilities and compare them to the default probalsliéistimated from CDS spreads on the same reference
company. Collecting data from both markets on several eafar companies with significant default proba-
bilities, we identify a strong correlation between the défarobabilities inferred from the two markets, and

find that deviations between the two estimates help prediaté movements in both markets.
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1. Introduction

Notional amounts in both credit and equity derivatives tar# to display strong growth. In September
2007, the International Swaps and Derivatives Association (ISDA) announced that the notional amounts
outstanding of credit derivatives grew by 75% to $45.46idnl from $26.0 trillion one year earlier, and the
notional amounts in equity derivatives grew by 57% to $1Qrion from $6.38 trillion one year earlier. As
a result of the continued strong growth in both markets glieestrong interest in understanding if and how the
two markets are linked. If the payoffs are linked but the ggiare not, trading opportunities arise. If payoffs
and prices are both linked, the understanding of each meakelbe substantially improved by integrating the

two markets.

For the ISDA survey, credit derivatives comprise creditdétfswaps referencing single names, indexes,
baskets, and portfolios; equity derivatives comprise tyggvaps, options, and forwards. In this paper, we
focus on two segments of the credit and equity derivativeketsithat show particularly strong linkages. On
the credit derivatives side, we focus on credit default SN&DS) written on a corporate bond, which remains
the largest segment by volume. On the equity derivatives, sig focus on American options written on the
stock of the corresponding firm that issued the corporatel .b@vhile there is much literature attempting to
link single name CDS with single name stock options, the $dowlate has been on European-style optons.
This focus is unfortunate since for single name stock opgtithe only transparency in pricing arises from
listed options, which are all American style. We conjectilna the past focus on linkages between CDS and
European options stems from the greater ease with whicepa€ European options can be analytically re-
lated to the underlying stock prices in standard optionipgicnodels. In contrast, the problem of analytically

relating American option prices to the underlying stockeiis notoriously difficult.

In this paper, we show that the spread between two Americeogtions with a particular strike range can
be used to directly synthesize a standardized credit insareontract that pays one dollar at default whenever
the company defaults prior to the option expiry and zeromifse. This direct linkage between American
put options and credit contracts holds true under a wides@éstock price dynamics. The key assumption
for this class of price dynamics is that random stock prigest@unded below by a barri& > 0 before
default and drop below an alternative barret [0, B) at default. After the default time and before expiry, the

stock price dynamics are bounded abovefbyAs long as these conditions are satisfied, the simple limkag

SExamples include Bakshi, Madan, and Zhang (2006), Carr and2005), Collin-Dufresne, Goldstein, and Martin (2001),
Cremers, Driessen, Maenhout, and Weinbaum (2004), and Keiken, and White (2004).



holds robustly, irrespective of the details of the stock@dynamics before and after default, the interest rate

dynamics, and default arrival rate fluctuations.

Classic structural models of default, e.g., Merton (19%4)e the property that prior to default, the firm
value is random and bounded below by the default barrier.uti snodels, stock prices vanish at default
and remain zero afterwards. In a recent paper, Carey andyG2007) show that private debtholders play
a key role in setting the endogenous asset value threshtad lvéhich corporations declare bankruptcy. In
particular, the private debtholders often find it optimalféoce the bankruptcy well before equity values

vanish. Our specification of the stock price dynamics isrie livith such evidence.

Suppose that investors can take static positions in atii@asimerican put options of the same maturity
and whose strike&; > Kj) lie within the default corridofA, B). Given that the stock price is bounded below
by B > 0 before default, and is bounded aboveAy: B at and after default, then a simple vertical spread
of the two American put options scaled by the strike distatg€l ) = (P(K1, T) — R(K2,T)) /(K1 — K2),
replicates a standardized credit insurance contract that pff one dollar whenever default occurs up to the
option expiry and zero otherwise. Without default, the ktpigce stays abovk;, and hence both put options
will not be exercised as they always have zero intrinsicezalfidefault occurs prior to the option expiry, then
the stock price falls below(, and stays below it afterwards. We will show that both optiars optimally
exercised at the default time as a result, so that the scptedd nets a payoff of one dollar at this time. If we
further assume that the stock price falls to zero at the tiefme (A = 0), then we can s&, = 0 and use a

single American put option to construct this credit inseenontractJ;(T) = R (K1, T) /Kj.

We refer to this standardized credit contract am recovery clainf This fundamental claim is simply
a fixed-life Arrow Debreu security paying off one dollar whitie (default) event occurs, and zero otherwise.
Since American put options trade simultaneously at sesalete maturities, it is possible to interpolate
and extrapolate in the maturity dimension to obtain a temuctire of synthetic unit recovery claims. By
assuming deterministic interest rates, we can readily coenine risk-neutral default probabilities from this

term structure.

To link the American stock options to the credit default sW@PS) spreads on the same reference com-
pany, we assume that the recovery rate on the corporate batlying the CDS contract is known. Then,
the value of the protection leg of the CDS contract becomepgstional to the value of the unit recovery

claim, which we can replicate using two American put optid@ace the value of the protection leg becomes

“The Chicago Board of Options Exchange (CBOE) has recentigclaed unit recovery claims under the name Credit Event
Binary Option (CEBO).



a known function of its maturity, one can uniquely deterntime CDS spread curve by further assuming de-
terministic interest rates. Alternatively, one can take @DS spread curve as given, strip it for the value of
the protection leg, and then back out the implied recovelg/oa the bond using the observable American put

spread.

To empirically test the strength of the linkage between e harkets, we choose eight reference com-
panies from the components of the North American High YielS8dndex (CDX). The Index is composed of
100 non-investment grade entities, distributed amouregthub-indices: B, BB, and HB. The composition of
the high yield index and each sub-index is determined by aartimm of 16 member banks. The indices roll
every six months in March and September of each year. We lek&G0 components from the index rolled
out in September of 2007 and take eight companies that wenalbke quotes on both CDS and American
put options. The CDS quotes are obtained from Bloomberg.Arherican options quotes are obtained from
OptionMetrics. We take the sample period from January 20@sihe 2007. From the options data set, at each
date we synthesize the value of the unit recovery claim ailakrvable maturities, compute the risk-neutral
default probabilities while assuming deterministic ietgrrates, and interpolate to obtain the risk-neutral de-
fault probability at one-year fixed time-to-maturity. Frahe CDS data, we use the one-year CDS spread to
also compute the one-year risk-neutral default prob&sliassuming fixed bond recovery rates and determin-
istic interest rates. Then, we compare the two time serieefaiult probabilities for each reference company.
First, we find that the strike choices in defining the Ameripahspread can induce some biases in the default
probability estimates. Nevertheless, the probabilitiegimed from the American put spreads are on average
close to those computed from the CDS spread. Furthermareafh company, the two time series of default
probabilities show high cross-correlations, especialhewthe default probability is significant. The cross-
correlation estimates are over 80% when the default probebviare over 2%. Furthermore, we find that

deviations between the two default probability estimatesteelp predict future movements in both markets.

In linking credit insurance to American equity options, waka assumptions on the stock price dynamics
that lie between structural and reduced-form models. Asrutairal models, we assume that default occurs
the first time that the stock price crosses a lower barrieichvtioes not need to be constant but nevertheless
needs to have a fixed lower bound. As in reduced form modelgsseme that the waiting time to default
is completely unanticipated. The main innovation in ourc#peation is that the default barrier is expanded
into adefault corridor (A, B). The stock price is assumed to evolve randomly above treutteforridor prior
to the default time, to drop below the default corridor atadétf and to evolve deterministically afterwards.

It is these three behavioral modes that generate the tigtdadie between the American options and the CDS



markets.

For comparison, we also implement a simple version of Mefi®74)’s structural model to compute the
one-year default probabilities by using information in trapital structure and the return volatility. In the
implementation, we use stock price to proxy the per sharéyegalue, net debt per share to proxy the per
share face value of debt, and one stock option implied Vityatd proxy for return volatility. Based on these
inputs, we compute the firm value and firm volatility, with whiwe compute the risk-neutral probability that
the stock price will stay above the face value of the debt ataime-year horizon. We use one minus this
probability as a measure for the one-year risk-neutraludefaobability from this model. We find that the
default probabilities estimated from the structural mael significantly lower than those obtained from the
American puts or those from the CDS spreads. Neverthelesgstimates can show high cross-correlations
with the default probabilities inferred from the CDS spreadpecially if we use the implied volatility of
out-of-the-money American put options as the stock retatatility input. This exercise shows that the real
information in the stock market on credit risk is in out-bEtmoney put options, as we have shown in our

simple robust linkage.

The rest of the paper is structured as follows. The next@eddys down the theoretical framework,
under which we build the tight linkage between the Americtotls options market and the CDS market.
In this section, we first review two simple generalizatiofishe standard option pricing model proposed by
Black and Scholes (1973) and by Merton (1973). Then we coenthia two generalizations to set up a toy
example of our modeling framework under which we can priceefican options analytically and link the
American put spreads to unit recovery claims. Finally, wecty the general class of models, under which
the simple linkage between American put spreads and CD&dpmemain robust. Section 3 describes the
data that we use for our empirical work and the procedurevileafollow to estimate one-year risk-neutral
default probabilities from the two markets. Section 4 corapahe two time series of default probabilities
for each company. Section 5 estimates the risk-neutraluttgfaobability from a simple structural model
and compares the estimates to those obtained from the Aangpiats and the CDS market. Section 6 offers

concluding remarks and directions for future research.

2. Theory

Black and Scholes (1973) and Merton (1973) propose an oimmng model, henceforth the BMS



model, that has since revolutionized the derivative imyusiThe main assumptions underlying the BMS
model are that investors can trade continuously over tilmat, sample paths of the underlying stock price
are continuous, and that the stock’s return volatility ingtant. As the model also assumes no arbitrage and
constant proportional carrying costs for the stock, thk-misutral stock price process is simply geometric

Brownian motion. When this diffusion process is startedrf@ positive level, it can never hit zero.

In what follows, we first review two generalizations of the BNhodel proposed by Merton (1976) and
Rubinstein (1983), respectively. Inspired by these gdizateon, we propose our modeling framework, under

which we build the linkages between credit insurance and aale equity options.

2.1. Atale of two generalizations

For companies with positive default probabilities, thecktprice going to zero is a definite possibility.
After a company defaults, its stock price is likely to be lomdat is common to assume that the stock price
is in fact zero after bankruptcy. Recognizing that the ulyiteg stock price dynamics in the BMS model
are not consistent with this default-related behavior,tble(1976) generalizes the dynamics by allowing the
possibility for the stock price to jump to zero. We refer tstimodel as the Merton-Jump-to-Default model
or simply MJD. As the stock of a company is a limited liabilagset, the MJD model realistically assumes

that the stock price remains at zero after the jump time.

Assuming that the risk-neutral arrival rate of such a jumgoisstant, we can still replicate the payoff of
a European call option in the MJD model by dynamically trgdimst the stock and a corporate bond whose
value also vanishes upon default. The addition of the bant&yustate does not destroy our ability to replicate
the payoff of the call option as long as we can use a corporatd mstead of a default-free bond as a hedge
instrument. The reason is that the value of the target caibo@nd the value of the stock-bond hedging

portfolio both vanish upon default.

Since the payoff of the call option can be replicated, it€glis uniquely determined by no arbitrage.
Merton (1976) shows that the only effect on the BMS call mgciormula of using the MJD model is to cause
the stock growth rate and call discount rate to both incréggbe risk-neutral default arrival rate. The reason
for these changes becomes clear once we recognize thattiba ppcing formula relates the call price at
any future time to the contemporaneous stock price, camdlitg on no prior default. The requirement that
the unconditional risk-neutral expected return on thekstoad the call both be the riskfree rate forces the

conditional growth rate in each asset to be higher, as theesdlor both assets drop to zero upon default.



Since each asset drops by 100% of its value, the conditionalth rate of each asset must exceed the riskless

rate by the default arrival rate.

Once the linkage between the value of a European call andidtsrlying stock has been established, the
link between the value of a European put and its underlyiogksis established by put-call parity. Merton
(1976) does not address the pricing of American optionsitlisistraightforward to analyze the impact of a
jump to default on the optimal exercise strategy. When thietyging stock pays sufficiently small dividends,
it is still the case that American calls are not exercisedygaee Merton (1973)). So long as the riskfree
rate is positive and dividends are sufficiently small, it lsoastill the case that American puts always have
positive probability of early exercise. As in the case withjump to default, the optimal exercise strategy is
to exercise the American put once the stock price entergpisip region. As this region contains the origin,
the American put will be exercised early if there is a jump &adilt. It will also be exercised early if the
stock price diffuses down to an exercise boundary. The &oalgtermination of this exercise boundary is a
difficult problem and is the main hindrance in analyticalbiuing American puts in either the MJD or BMS

model.

The MJD model extends the BMS model to include bankruptcyengreserving tractability. In evaluating
the validity of any extension of the BMS option pricing modeis common to use the notion of option implied
volatility. The implied volatility of an option is defined d@ke constant volatility input that one must supply
to the BMS option pricing model in order to have the BMS modaue agree with a given option price.
The given option price can be produced by either the moddientarket and hence implied volatilities can
likewise be produced by either the model or the market. Thdeahionplied volatility of the BMS model is
invariant to strike price. In contrast, the model impliedatiity of the MJD model is always decreasing in

the strike price, generating what is commonly referred tarasnplied volatility skew.

Motivated by the possibility of producing an analyticallgadtable European option pricing model for
which implied volatilities can decrease or increase irksfrRubinstein (1983) introduces the displaced dif-
fusion option pricing model, henceforth the RDD model. Iistimodel, Rubinstein relaxes the requirement
in the BMS model that the state space of the underlying stoick jgiffusion be the whole positive real line.
Specially, letS > 0 denote the initial stock price, Rubinstein introduces\a parameteB € (—», ). As-
suming a constant interest ratean initial investment oB in the riskfree asset would grow ®€® by time
t. Rubinstein suggests that the risk-neutral process fanrlderlying stock price be constructed by summing

Be' with a geometric Brownian motion. As a result, the state spEfdhe underlying stock price process at



any timet is (B€', ») rather than0, «).

As with the MJD model, Rubinstein’s displaced diffusion isextension of the BMS model while main-
taining the analytical tractability. However, the RDD mbHas some properties that are not shared by either
the BMS or MJD model. In particular, B is positive, levels ir{0, B€®) cannot be reached by the stock price.
It can be shown that the implied volatilities produced by thositively displaced diffusion are an increas-
ing function of strikeK € (B€', ). If B is negative, levels ifB€*,0) can be reached by the stock price,
and the implied volatilities produced by the negativelypthsed diffusion are a decreasing function of strike

K € (B€',). The RDD model collapses to the standard BMS model when SpatiemenB is zero.

It is interesting to compare the two generalizations of théBthe MJD and the RDD model. Merton’s
generalization introduces a scale facédr on the allowed sample paths, while Rubinstein’s genetitiza
introduces a shifBe'. Under MJD model, the underlying stock price has a stateespH6, ) and the model
implied volatility can only stay constant or decline in k&riprice. Under RDD, the underlying stock price has
a state space at tintef (B€', ») and the model implied volatility either increases with théke whenB > 0
or decreases with the strike wh8n< 0. Neither model can produce a U-shaped relation betweeheithp
volatility and strike price, a shape that is the most commafiserved in the market and is often referred
to as the implied volatility smile. To generate smile-catent dynamics, we propose to combine the two

generalizations to both scale and shift the sample paths.

2.2. Defaultable displaced diffusion: A toy example

Before we lay out the general model specification, we stdh avtoy example to illustrate the ideas behind
the linkage between credit spreads and the value spreacohtmerican puts. Our specification allows for
both default as in the MJD model and diffusion displacemerihdhe RDD model. Taken together, we label

the class of models that we proposedagaultable displaced diffusior the DDD model.

As in earlier generation models, we assume frictionlesskatgr no arbitrage, and the existence of a
riskfree asset with strictly positive paths of boundedaiion. As a result, there exists a risk-neutral measure
Q under which all tradeable securities have an expectedrenual to the riskfree rate. We usego denote
the common expiry date of the options and credit contracts. agéume that the underlying stock pays no

dividends ovef0, T] and we letr > 0 be the assumed constant riskfree rate over this horizon.

To intuitively describe the risk-neutral stock price dynesrin the toy DDD model, we start with the stock



price Sfollowing Rubinstein (1983) displaced diffusion over theefil time horizon € [0, T]. The stock price
process is assumed to be positively displaced, ®ith(0, S]. Then, we depart from Rubinstein’s model by
adding the possibility of a down jump in the stock price. K fiirst jump in the stock price happens to occur
attimeT, we assume that the stock price jumps to some conRtarid, B). More generally, if the stock price
jumps at some time < [0, T], we assume that it jumps to the deterministic recovery IBygl = Re "(T-U.
After the jump timet, the stock price grows deterministically at the riskfreeerai.e. § = R(t) fort > 1.

The risk-neutral arrival rate of the jump in the stock pris@ssumed to be constanfat 0.

To formally model the risk-neutral stock price dynamicshe toy DDD model, we introduce a standard
Brownian motionW and a standard Poisson procé&bsvith intensityA. We letG be a geometric Brownian
motion defined by

Gy = e/, (1)

with Gg = 1 and whereag is a real constant. The random proc€sis a martingale started at one. We Jdbe

another martingale started at one defined by
J =1\ =0)e". 2

This process drifts up at a constant growth rate\and jumps to zero and stays there at a random and
exponentially distributed time. It is easy to see tBaandJ are both martingales since equations (1) and (2)

imply that they respectively solve the following stochagtifferential equations,
dG = 0GdW, dd=—J_(dN —Adt), 3)

where the subscrifit- indicates that the pre-jump level is used at timés a resultJ is a right continuous

left limits (RCLL) process.

We construct the stock price procesby combining the two random procesgesndJ as
§- =€'{R(0) +}-[B—R(0) + (S~ B)G{}. (4)

To understand this RCLL stock price process, we can rewnigestock price process as the sum of three
components,
S =R(0)€" +[B-R0)e"} +(S—-B)e" % Gr. (5)



Each component has the form of a constant, multiplie@'hyand then a martingale. Therefore, each com-
ponent can be interpreted as the titmealue resulting from investing the constant in an asset e/oigal
price is one. In this sense, we are attributing the equityevalf a firm to returns from three types of in-
vestments. The first type is a riskless cash reserve defindgbebgleterministic and non-negative process
R(t) = R(0)€". The second type is a defaultable risky cash reserve defintiblstochastic and non-negative
procesgB — R(0)]€"J_, with the martingale)_ capturing the default risk. The third type of investment is a
defaultable and market risky asset defined by the stochasticion-negative proce$S, — B)e'J_G;, with

the martingales; capturing the market, diffusion-type variatidrinder the risk-neutral measu@® all three

investments generate a risk-neutral expected return of

From equation (4), we can derive the stochastic differeatiaation for the stock price dynamics,
d§ = rS-dt—(S-—R())(dN - Adt)+{S- — [R(t) + (B—R(0))1_€"]}odW, (6)

where the exposures to the martingale incremdis— Adt anddW are both affine in the stock pric®_.

Since no jumps occur before default, the pre-default stoide plynamics simplify to,
dS = [rS- +MS- —RM)dt+{S- — [R(t) +€"[BE' —R(t)]}odW,  te[0,1), ()

where both drift and the diffusion coefficient of the stocicerdynamics are affine in the stock price.

If we setA = 0 in the toy DDD model, the model degenerates to the positidadplaced diffusion of
Rubinstein (1983), for which implied volatility increasedth strike. Conversely, if we sd = 0, the model
degenerates to Merton (1976)'s MJD model, for which impliethtility decreases with strike. Whenand
B are both positive, the implied volatility smiles when graghagainst the strike price. This model behavior
is broadly consistent with the behavior of implied volditis obtained from market prices of listed American

stock options.

2.2.1. Transition probability density function

In this toy model, the transition probability density fuioct (TPDF) of the stock price can be derived in
closed form. LeK (t) = R(0)€"! + [B — R(0)]e" M. ForK > K(T) andS> K(t), the TPDF conditional on

5The stock price dynamics can also have jumps. For simplisigyexclude this possibility in our toy example, but we inmmate
jumps in the general DDD specification.



surviving toT is®

o _ &P(=[Inh(K.S) +0*(T —1)/2) /oy T=12/2} 1
r= 2r02(T —1) K—R—[B—R(0)je T’
8)

The risk-neutral probability of defaulting ovér, T] is simply 1— e MT-U and this is also the risk-neutral

Q{Sr € dK|§ =SNr =

probability thatSr = R, given that§ = S> K(t). One can easily use these results to develop closed form
formulas for European options. As no listed single namekstgtions are European, we leave this as an

exercise to the interested reader.

2.2.2. Pricing American put options

Prior to default) = € andG; > 0, so (5) implies that the stock priG exceeds(t) = R(0)€" 4 [B—
R(0)]e"*Mt, At the default timer, J; = 0, and the stock price jumps down to the riskless cash resevee
R(1) = Re"(T-U. After the default, the stock pricg = Re"(T-Y. SinceK (t) > B andR(t) < R, we observe
that the stock price process is random and at |Baist the pre-default period € [0,T A T], and becomes
deterministic and at mo® in the post-default period,< [t, T]. These special properties allow us to derive a

closed-form solution for the value of of American puts skrbelow B.

LetK denote the strike price of an American put maturin@ alf K € [0,R(0)], the put is worthless since
it cannot finish in the money in the toy DDD model.Kfe (R(0),R], at any timet before default, the stock
price is aboveB and hence the strike prid€. To define the continuation and exercise regionst*leolve
Re "(T-t') = K. If default occurs at some timein (0,t*), thenS; < K and it is optimal to exercise at If
default occurs inft*, T], thenS; > K and it is better to hold on to the American put and let it expicethless.
Therefore, for such puts, the continuation region is thewraf all stock prices abovB(t) and the curve
R(t),t € [t*, T], while the exercise region is just the curRé),t € [0,t*]. The payoff from holding such an
American put isK — R(1) at timet if T <t* and zero otherwise. Lé%(K,T) denote the time-0 value of an

American put. By risk-neutral valuation, we have,

Po(K,T) = E%e K -RO)LT<tY)} = /Ot* Ae Me K —Re"(TY]dt

= MK R A

(9)

1— e (At rl- e N ]

5Refer to Appendix A for a proof.

10



If K € (R,B], thent* > T and hence the continuation region is all stock prices alBfte while the exercise
region is just the curv&(t),t € [0, T]. The put value is obtained by simply replacirigvith T in equation (9),

1— e—(r+)\)T T 1— e—)\T

Po(K,T)=A [Ki—Re (20)

r+A A
For American puts options struck aboBefinite difference methods can be used to numerically approx
imate the American put valuB(S;t) and the free boundarg‘(t),t € [0,T]. ForS> S(t),t € [0, T], the

American put valud’(S't) solves the partial differential equation,

0
5+ 5 |Psn=rpisy, )
where
G = 0—Z{S— [R(t) + e [Be' — R(t)]}za—2 +{rS+A[S— R(t)]}i (12)
2 0F oS’
subject to the terminal condition
PST)=(K-9",  s>S(T), (13)
and the boundary conditions:
. .0
Sllgzt) P(St)=K-S'(t) and le% a—SP(St) =-1 te[0,T]. (14)

ForS< S(t),t € [0, T], the American put valuB(St) =K —S

2.2.3. Linking American put spreads to unit recovery claims

Now suppose that we observe the market prices of at leastutvoféhe-money American put options of
maturity T. Let K; andK; denote the associated strike prices and we requireRkakK; < K, < B. Since
S > B prior to the default time, we know that neither put will be eiged if the firm survives t@. In
contrast, if the firm defaults at some timdeforeT, sinceS; < K; and grows deterministically thereafter,
both puts will be exercised at Let AK = Ky — K; and APy(T) = Po(Kz, T) — Po(K1, T), wherePy(Ky, T)
andPy(Kz, T) are the two observable put option prices. Suppose that ast'nnvbuysﬁiK units of theK, put

and writes an equal number of tKe put, the cost of this position i@%, which we refer to as the American
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put spread.

If no default occurs prior to expiryt(> T), the American put spread expires worthlesst ¥ T, the
American put spread pays out one dollar so long as both pdrdbave optimally. Furthermore, so long as
the American put prices are consistent with optimal behraagois usually assumed, these prices can be used

to value credit derivatives.

To illustrate this point, consider anit recovery claim which pays one dollar at if T < T and zero

otherwise. LetUp(T) denote the arbitrage-free spot value of this claim. In tyel®D model, this value is

1— e*(l"l’)\)T

r-+A (15)

]
Uo(T) = /0 Ae (NG — A

Unfortunately, if the only assets with observable pricesthe riskfree asset and the stock, one cannot infer the
required inpul\. Fortunately, if the observable prices are those of two Ataerputsy(Kz, T) andPy(Ky, T),

hten no arbitrage dictates that the value of this unit regogkim is equal to the value of the American put
spread:

Uo(T) = AZ)&T)-

(16)

As we will show, this simple equation holds under much moneegal conditions and can be regarded as the

fundamental result of this paper.

Furthermore, under the toy DDD model, we can equate the gt hiand sides of equations (15) and (16)
to numerically determing from the observation of the riskfree ratand the American put spreéﬁiﬂ((—ﬂ. As

a result, we can compute the risk-neutral default protigitoiver a fixed horizori0, T] as 1— e T,

2.3. Defaultable displaced diffusion: The general spegiitmn

The toy DDD model places strong restrictions on the stockepdynamics to show clearly the tight
linkages between American put spreads and default comirgi@ms. In this subsection, we show that the
fundamental linkage as shown in equation (16) remains yvelidn if we relax the assumptions of the toy

DDD model substantially. In particular, we can generaltetoy model along four major dimensions.

e Random Interest Rates. In the toy DDD model, the riskfree interest rate is fixed as astant. In
the general specification, we allow the spot interest rdatebe a nonnegative stochastic process. As

a result, there exists a money market account whose indianice is one and whose balance at time

12



t € [0,T] is given byp; = elo'sS. No arbitrage dictates that there exists a probability mes® under

which the gains process from any admissible trading styadeflated by3 is a martingale.

e Random Stock Recovery: In the toy DDD model, the stock price evolves randomly abBwvgrior
to default, while the recovery valug(t) evolves deterministically below a levBl< B afterwards. In
the general DDD class of stochastic processes, the stook pain be random at the default time and
afterwards, but it must evolve below a barriex B in any post-default periotl€ [t,T]. To define
these post-default dynamics, (&, B) be the default corridor witlh > 0 andB < &. LetR; be the spot

price of an asset with suppdf, A] over [0, T]. We may write its stochastic differential equation as:
dR =rRdt+dMR t € [0,T], (17)

whereMR is aQ martingale. We simply s& = R in any post-default periotd< [t, T].

e Stochastic Default Arrival: In the toy DDD model, the risk-neutral default arrival radecbnstant. In
the generalization, the risk-neutral default arrival rais a nonnegative stochastic process. We define
J=1N = O)effghsdS whereN is now a counting process. We note tlat a stochastic exponential

since it solves:

d3 = —J_[dN — A\ dt]. (18)
Furthermore sincdk — fé Asdsis a martingale, so i3. We require that the martingaldbe independent
of the procesf.

e Stochagtic Volatility and Jumps: In the toy DDD model, the market risk driver is a Geometric\Bro
nian Motion, denoted aS;. In the general specification, we allow the market risk dri@eto be the
stochastic exponential of a martingM?, e, G =% (MG). As a result,G still starts at one and is

still a martingale since

dG =G dM’. (19)

The processs is now allowed to jump, but we assume that jump#$/4fi are bounded below by -1, so
thatG is nonnegative. We furthermore require that the martinGabe independent of the martingale

J. In contrastG can depend on, A, andR.

To contend with this four dimensional generalization, westouct the stock price process as:

S=(1-I)R+eb I} [B+(SH-B)G, (20)
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whereRy_ = Ry. We can again expressas the sum of three stochastic processes,
S=R - JR+ef)B+(-B)G], te[0T). (21)

Fort € [0,T AT], the first termR; is clearly an asset price process, as indicated in equation Since the
martingalel is a stochastic exponential and is orthogondktthe productiRis also an asset price process for
t € [0,TAT]. Since the martingalesandG are orthogonal, the proced$B+ (S — B)G;] is also a martingale.
As a consequence, the last term in (21) is an asset pricegzoltdollows thatSis also an asset price process
fort € [0,TAT]. SinceN; = 0 andJ = e/o*sds prior to default, the stock price dynamics over [0,TAT) can
also be written as,

§ = R[1—eloXd5 1 ghr=Mdsp 1 (5, B)Gy]. (22)

The stochastic differential equation that governs thekspoice process prior to default becomes,

dS = (it +A)(S — R)dt+rRdt+ [S_ —R_ —J_eb™SB_R)JdMS, te[0,TAT].  (23)

Equation (21) treats the stock as a long position in the vesasset with pricdR;, a short position in
the default risky version of this asset with prie@ASdSRt prior to default, and finally a long position in an
asset worth at leasto("s*As)95B prior to default. Sinceelo’sds > 1, the latter two positions net to at least
eloAsds(B — R)) prior to default. Sinca/o’ds > 1, the three positions are worth at leBsprior to default.
Thus, the stock price evolves randomly ab®&ie the pre-default periofD, T A T]. If the default timet occurs

at or beforeT, the stock price jumps tB; € [0,A], and evolves aR afterwards.

Now, we assume that we observe at least two American putraptidth expiry datel' and with the two
strike prices falling within the default corridoA < K; < Ky < B. Prior to default, the stock price evolves
randomly aboveaB, which is above the strike prices of both options. Therefoegther option is exercised. If
default occurs at or beforE, the stock price jumps at the default time to some randonvesgdevelR; that
is below the strike prices of both options and stays belo Boikes afterwards. As a result, both American
puts are optimally exercised atThese results jointly imply that

_ AR(T)

Uo(T) AK

(24)

This simple equation robustly links the unit recovery claimthe American put spread.
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At the time of this writing, unit recovery claims are listed the CBOE as Credit Event Binary Options
(CEBO) with planned maturities ranging from 1 to 10.25 yedise CBOE also lists long-dated single-name
put options under the name Long-term Equity AnticiPationusigies (LEAP’s). LEAP maturities can be as
long as 39 months from the date of the initial listing. If thicps of American put spreads and the CEBOs
listed by the CBOE violate equation (24), then either theiassd dynamical restrictions in the DDD model

are incorrect, or else there exists an arbitrage oppoytunit

Using American put options at different maturities, we cae equation (24) to compute the values of
the unit recovery claim at different maturities. If we fusthassume deterministic interest rates, we can strip
the risk-neutral default probabilities from the term stuwe of unit recovery claims. Specifically, assume that
the riskfree rate is a deterministic function of timg),t € [0, T| and letsy(T) denote the spot price of the
survival claim that pays $1 at if T > T and zero otherwise. Then irrespective of how default o¢auws
arbitrage implies that

So(T) = e 18 09t _yy(T) + / Yo K rS98, () dt. (25)

The equation reflects the fact that the survival claim hasémee payoff as the portfolio consisting of:
e long one default-free bond paying $1&&nd costings /o "0t injtially.
e short one unit recovery claim maturing®&@and costindJo(T) initially.
o long r(t)e~ /' (919t unit recovery claims for each maturitye [0, T], with each unit costindJo(t)
initially.
If no default occurs befor&, the default-free bond in the portfolio pays off the desidetlar, while all of the

unit recovery claims expire worthless. If the default oscheforeT, the value of the portfolio at the default

timet € [0, T] becomes
e kT 1+/ t)e~ /i 1(9dsgp — g KT 1+/ de K r9ds_ o (26)

as desired.

Once the spot pricgp(T) of the survival claim is known, the risk-neutral probalilaf defaulting over
[O’T] ISI
, T .
Q{T<T}=1-el"0dtgT) = Ug(T)el Ot _ / r(t)elo 99y (t)dt. (27)
0
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The risk-neutral default probability ardh(T )elo "©9t are both forward prices of claims that pay one dollar
if default occurs before expiry. The risk-neutral defauttfpability is lower tharo(T )efo Ydt when interest

rates are positive, because the payment time in the forraenc$ T rather thart.

2.4. Linking unit recovery claims to CDS spreads

Since our ultimate objective is to compare the credit spisamation from the stock options market
to that from the CDS market, we go one step further in thisi@eand use unit recovery claim values to

determine the CDS spread in a fairly robust way.

For this purpose, we assume that the bond recovery rate wrkatR® € [0,1). LetV/™®(T) denote the
time-0 value of the protection leg of a CDS contract, whiciipa— R® at timeTt if T < T and zero otherwise.

As this payoff is simply 1- R® times the payoff of a unit recovery claim, no arbitrage irag)i

VEU(T) = (1— RO)Uo(T). (28)

Furthermore, letdy(T) denote the value of a defaultable annuity, i.e., a claim gats $1 per year
continuously until the earlier of the default timeand its maturity datd. As a consequence of frictionless

markets and no arbitrage, we have

AolT) = [ " soltydt. (29)

Assuming that the riskfree rate is a deterministic functbtimer(t),t € [0, T], we can substitute (25) into

(29) to relate”y(T) to the given term structure of unit recovery claim values,
Ao(T) = / { —Jor(9ds_ yo(t) + / Wdvyo(s )ds} dt. (30)
0

Finally, letko(T) denote the initial CDS spread of maturify We assume that spread payments are made

continuously untift A T.” Then, we can represent the CDS spread as

prot
oM =

(31)

Assuming a known bond recovery r&&implies that equation (28) can be used to relate the nunteiatbe

In practice, payments are quarterly, but an accrued spraagignt is netted against the default payoff when defauls o
occur on a CDS payment date.
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terminal unit recovery claim valugy(T). Assuming deterministic interest rates implies that (20) be used
to relate the denominator to the given term structure of iggidbvery claim values. Making both assumptions

allows the CDS spread to be expressed in terms of unit regal@m values,

_ (1-R°)Uo(T)
i {e— J8r(919s — Ug(t) + [3 r(s)e*fsf'(")d"uo(s)ds} dt

ko(T) (32)

Recall from (24) that in the DDD model, a unit recovery claimshthe same value as a co-terminal

American put spread:
APy(T)
Uo(T) = .
o(T) K

(33)

Substituting (33) into (32), we can compute a CDS spread fiworterm structures of American put prices.

3. Data and estimation

In this section, we gauge the empirical validity of the sienfiieoretical linkage between American put

spreads and credit default swap spreads. We collect daebfioth markets and perform an empirical analysis.

The CDS quotes are obtained from Bloomberg, which has peoMvidliable CDS quotes across a spectrum
of maturities since late 2004. The American options quotesoatained from OptionMetrics. We take the
common sample period from January 2005 to June 2007. Thedbraption maturity is usually between
one to three years. The shortest maturity available for dd& Quotes are at one year maturity. Hence, our

analysis focuses on default probabilities at horizons betwfrom one to three years.

To obtain a set of companies with reliable quotes from bothketa, we apply the following criteria: (1)
Bloomberg provides reliable CDS quotes for the company at dmo, and three year maturities over our
sample period. (2) OptionMetrics provides non-zero bidtgsidor one or more options struck more than one
standard deviation below the stock price and maturing inentiban 180 days. (3) The average CDS spread
at one year maturity over our sample period is over 30 basiggoThe first two criteria guarantee that we
have the required data from both markets for our comparatnadysis. The third criterion generates a set
of companies with significant default probabilities. Formganies with very low default probabilities, the
noise due to bid offer spreads of out-of-the-money puts dewamp any default signal that these prices may
possess. Based on the above criteria, we choose eight caap@able 1 lists the tickers, the cusip numbers,

and the names of the eight companies.
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3.1. Inferring default probabilities from American put spds

Our model assumes the existence of a default corriddB)(such that the pre-default stock price evolves
randomly above the corridor and the stock price at defaultedierwards evolves randomly below the corridor.
Given knowledge of the corridor, we can choose two Ameriagroptions struck within the corridor and form
an American put spread that replicates a unit recovery clameality, however, the location of the corridor
is not known. To identify the corridor, we make the simplifgiassumption that the stock price drops to zero
upon default. In this caséy,= 0 and we only need to choose one American put option withestriice lower

thanB.

Under our assumptions, any put options struck lower Bavould serve our purpose. Since we do not
observe thiB, we start from the lowest available strike and choose thigdiitsoption with non-zero bid quote.
That is, we choose the lowest available strike under whietbtti quote on the American put is strictly greater
than zero. Then, the value of the unit recovery claim is ddfemethe American put option value divided by
the strike price of the option. With zero equity value reggyeve choose, = 0 and hencé(K;) = 0. We

use the mid-value of the put option to compute the value otithierecovery claim.

As an alternative, we have also chosen the lowest non-zerstbke ask, and the next strike ak;
to define the put spread. The implied default probabilitiess samilar in magnitude, except that using two
strikes often introduces more short-term variation in th#dydestimates. From a trading perspective, using
two contracts also increases transaction costs as we needs®two bid-ask spreads instead of one. Thus,

we report our results based on the single strike American put

American put options are available at several fixed expitgsiaTo construct a time series of default
probabilities with a fixed time-to-maturity, at each datee first synthesize a unit recovery claim at each
expiry dateT. Then, we compute a default arrival raté, T) from the value of each unit recovery claim

based on the following equation,

1— e (rET)+HALT))(T-1)

ULT) =ALT) (T +AGT)

(34)

wherer (t,T) denotes timé-continuously compounded spot rate with expiry dbtevhich we strip from the
term structure of US dollar LIBOR and swap rates assumingepiese constant forward rates. The LIBOR
and swap rate data are obtained from Bloomberg. Equationd@4nesA(t,T) implicitly as a nonlinear

function of the unit recovery claim valud(t,T) and the corresponding interest rai¢,T). We had no
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difficulty solving this equation numerically.

Once we have solved for the default arrival raig, T) at each expiry dat&, we linearly interpolate
the arrival rates across different time to maturiti@s—t) to obtain arrival rate estimates at fixed time-to-
maturities of one, two, and three years. We do not extrapadiaearly; instead, when the maximum option
maturity is less than the target maturity, we use the arrai estimated from the longest maturity options.
When the shortest option maturity is greater than the targetrity, we use the arrival rate estimated from
the shortest maturity options. From this approach, we cocisthe time series of default arrival rates at three
fixed maturitiesA(t,T)° with T —t = 1,2 3, respectively. The superscriptreminds us of the fact that the

arrival rates are estimated from options market infornmatio

The relation in Equation (34) is derived under the assumptibconstant interest rates and constant
default arrival rates. While this appears to contradict assumptions, it should be noted that we use this
equation merely as a way of converting the unit recoverynthalue to a quantity that is relatively stable
across maturities. With the default arrival rates, we canmate the corresponding default probabilities as
Qt,TP=1— e AET)O(T-t)

3.2. Inferring default probabilities from CDS spreads

We have CDS gquotes at one, two, and three year maturitiesif@othe default probabilities at the three
horizons from the CDS quotes, we assume constant intetestand default arrival rates as we have done for
the American put spreads. Further assuming fixed bond rec&®Peand continuous premium payment, we

can directly convert the CDS spread qukfe T) to default arrival rates as,
MET) =k, T)/(1-R), (35)

where the superscript “c” oh(t, T)® reflects the fact that the arrival rate is estimated from tB&@narket.
With the default arrival rates, we can compute the defauwbability asQ(t,T)¢ = 1 — e AtT(T-0 n

computing the default probabilities, we follow industryngention in fixing the bond recovery to be 40%.
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3.3. Replicating unit recovery claims from both markets

Translating the information in both markets into defaulblabilities at fixed time to maturities makes
it convenient for us to perform comparative time series yBigal An alternative perspective is to analyze
investment returns on the synthetic unit recovery clainte American put spread directly replicates this unit
recovery claim. In particular, when we assume zero equitpwery at default, the put spread reduces to a

single American put option. Tracking the return on this puiian is simple.

On the other side, from the CDS market, we can infer the valtleeocorresponding unit recovery claim
from the CDS spread quotes by combining equations (34) abduidder assumptions of constant interest
rates and default arrival rates. Carr and Flesaker (2000 $tow one can theoretically replicate the unit
recovery claim using CDS contracts of all prior maturitieBhe practical feasibility of this replication is
hindered by the large transaction costs of signing many-thescounter CDS contracts over a continuum
of maturities. Thus, in this paper, we propose to use theranivery claim value computed from the CDS
market purely as an informational source. We investigatethdr information from the CDS market can help

predict returns on the unit recovery claim synthesized fFomerican put options.

4. Results

Table 2 compares the summary statistics of the risk-nedéfalult probabilities computed from the Amer-
ican put spreads on the left side with that computed from tb& Epreads on the right side. The last column
of the table reports the cross-correlation between the inwe series for each company. The three panels

report the default probabilities at times to maturity of ptveo, and three years.

The mean default probabilities computed from the two markeé largely in line with one another. The
autocorrelation estimates are larger for CDS-implied uléfprobabilities, potentially suggesting that the
American put-implied probability contains more transianise. For the same company, the default prob-
abilities increase with maturities. The cross-correfatstimates between the default probabilities computed
from the two markets vary across different companies. The$b are from KBH, with the correlation esti-
mated at 0.207, 0.352, and 0.321 at one-, two-, and threenyatarities, respectively. The highest correlation
estimates are for GM, at 0.944, 0.935, and 0.879 for the tmagerities, respectively.

Figure 1 plots the cross-correlation estimates as a fumafdhe mean default probabilities computed
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from the CDS market. Each panel represents one maturity;enthe dots represent data points and the solid
lines represent a local-linear smoothing fit. At all threetuméies, we observe an upward sloping relation
between the default probabilities and the correlatiomesties. The correlations between the two markets are
higher when the default probability for the underlying camp is high. When default probabilities are low,
the American put spreads are more likely to be contaminayethdrket risk components, thus reducing the
cross-correlation. The noise can also be partially geaéray our methodology in choosing the strikes of the
American put spread. By choosing an American put option wtitictly positive bid quote, the American put
spread would always have positive value, regardless of noa¥l $he default probability is. Nevertheless, for

a company with a low default probability, the American pulireaat the correct default corridor can have a

zero bid value given the discrete nature of quotes.

[Fig. 1 about here.]

Figure 2 plots the mean difference between the two defadlighility estimates from the two markets as
a function of the mean default probabilities computed from €DS market. The difference is computed as
Q°—Q°. Hence, a positive mean difference suggests that the Aarepat spreads over-estimate the default
probability relative to the CDS spread and vice versa. Eacteprepresents one maturity. The dots in each
panel are data points and the solid lines are locally-liseawothing fits. We observe that at one- and two-year
maturities, the mean difference is positive when the coryipanean default probability is low, but becomes
negative when the company’s mean default probability i1 hilhe sign change suggests that on average,
compared to the CDS spread, the American put spread tendsit@stimate the default probability when the
company’s default probability is low, but under-estimdtis probability when the default probability is high.
At the three-year maturity, the mean differences are negfdr most companies. Similar to the pattern at the
other two maturities, the negative bias increases witregsing default probabilities. When we perform the

locally-linear smoothing fit in each panel, we obtain dowrdvsloping lines in all three panels.

[Fig. 2 about here.]

When the default probability is low, our criterion for chawg the strike with strictly positive American
put bid quote can over-estimate the default probabilityabbse part of the put value can come from the
market risk. Figure 2 shows that this bias is more severeat shaturities but becomes negligible at longer

maturities. On the other hand, when the default probahlsityigh, our zero-equity-recovery assumption can
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lower the estimate for the default probability. For examjflehe stock recovenRS is strictly greater than
zero, then the American put price should be dividedKy— R®) instead of byK; to generate the value of the
unit recovery claim. In this case, assuming zero stock r@gounder-estimates the value of the unit recovery

claim and hence also under-estimates the default protyabili

Figure 3 compares the time series of the two default proibakistimates for each company and at each
of the three maturities. Each panel represents one compahgree maturity. Within each panel, the solid
line denotes the time series estimated from the Americasgads, and the dashed line represents the time
series estimated from the CDS spreads. The co-movememisdrethe two time series are obvious from the
plots. Overall, we observe more transient movements in tblegbilities computed from the American puts

than from the CDS quotes.
[Fig. 3 about here.]

To quantify the co-movements between the two time seriegdeh company and at each maturity, we
regress the default probabilities computed from the Anagrjguts against the default probabilities computed

from the CDS market,
Qf =a+bQf +a. (36)

The objective of the regression is to identify their relatsensitivities. We use the less noiBy series as
the regressor to reduce the potential bias induced by emarariables issues. We estimate the regressions
using the generalized methods of moments (GMM), with theyimeng matrix computed according to Newey
and West (1987) with 30 lags. Table 3 reports the regressibtmatest-statistics, and the R-squares of the
regression. If both quantities are unbiased estimateseo$déime risk-neutral default probability, we would
expect an intercept of zero and a slope of one from this regmesTable 3 shows that the intercept estimates
are mostly significantly different from zero and many of thgpe estimates are significantly different from

one.

One of the potential biases induced by measurement errdhne iregressor is to bias the slope estimate
toward zero and accordingly bias the intercept above zerdedd, all intercept estimates are significantly
positive, and all the significaritstatistics on slope estimates (against the null value e) ane negative.

Hence, measurement errors in the regressor can contribptattof the results.

Given the overlapping information in the two markets, wejeoture that deviations between the two

probabilities series obtained from the two markets can kd ts predict future movements of the two series.
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Specifically, we use the deviations to predict future charigehe two default probability series,

AQP, p =@ +0°(QP —cQp) + & pr,  AQE,n = @ +b°(QF — cQF) + € (37)

whereAQ; . o denotes changes in the default probability from datet + At, with At being the prediction
horizon. The coefficient adjusts for potential long-run scaling biases in the twéeseM/e estimate the two
equations for each company and at each maturity using ativieiprocedure: Given an initial guess Qrwe

run two time series regressions to estimate the coeffici@fts°,a% b®). Then, we minimize the sum of the
squared regression residuals to obtain the coeffidem/e consider prediction horizons of one, seven, and
30 days. When there are holidays or missing data, the cha@ge; is over the horizon fronh to the earliest

date with available data that is greater or equaHtat.

Tables 4 and 6 report the estimation results for the thrderdiit prediction horizons, respectively. As
a robustness check, we observe that the estimates for timegwating coefficients at all three prediction
horizons are similar to the slope estimates from equatiéh &orted in Table 3. As expected, the fraction
of variance explained increases with the length of the ptiedi horizon. At each horizon, the R-squares
for predicting the option series are larger than that fodjmteng the CDS series. This R-squares difference
suggests that CDS quotes contain more reliable informatmut default probabilities than option quotes.

Default information is first revealed in the CDS market.

The estimates for the slope coefficiéfitare significantly negative for all companies at all threeuriaés
and for all three forecasting horizons. The significantlgatere estimates indicate that American put option
prices tend to decline in the future if they are too high coragdo the CDS spread today and likewise, they
tend to increase if they are too low compared to the CDS sptatady. The fraction of variance explained
by the prediction ranges from 3% to 10% at a daily horizonnfi@o to 24% at a weekly horizon, and up to
40% at the monthly horizon. These results suggest that wexaloit the linkage between the two markets

and use their deviations to predict future changes in potésnerican put options.

The estimates fao® are mostly positive but insignificant. The R-squares of tfegljgtion are mostly low.
These results suggest that the deviations between the twk@tadave only weak predictive ability for future
CDS movements. One exception is GM, for which the slope aeffi estimates are significantly positive
for one- and two-year default probabilities at both dailyl ameekly prediction horizons. The R-squares is
about 4% at daily horizon and over 11% at weekly horizon fog-gear default probabilities. Hence, for

some companies, the options market also helps in discayeredit risk information. The ability to predict
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three-year default probabilities is lower than for the otfwe maturities. This result is potentially due to the
fact that three-year option quotes are not as readily dlailas for nearer maturities and hence most of the

three-year default probability estimates arise from gdiations.

4.1. Predicting the movements of unit recovery claims

Transforming the information in the options and CDS marketis default probabilities over fixed times
to maturity makes it convenient for us to perform compagatimne series analysis. A more practical approach
is to analyze the cross-market interaction between tradabtruments, such as the unit recovery claim that
pays one dollar when the company defaults prior to expiry z810 otherwise. The American put spreads
directly replicate this unit recovery claim. In particylashen we assume zero equity recovery at default,
the put spread reduces to a single American put option. irrgdke evolution of the American put option
becomes a simple exercise. In this section, we investigatetine CDS market information helps predict the
movements in the unit recovery claim synthesized from alsiAgnerican put. Assuming constant interest
rates, constant default arrival rates, and fixed bond regowe can convert the CDS spread into the unit

recovery value by combining equations (34) and(35),

K(t,T) 1— e (r(LT)+K(ET)/(1-R))(T—t)
(1- Rb) rit,T)+k(t,T)/(1— Rb)

Ut T) = (38)

We analyze how this CDS-market inferred unit recovery claatue covaries with the unit recovery claim

synthesized from the American put(t,T)° = P(K;)/K3, given the assumption thib = 0.

To generate a series of unit recovery claims from Americanoptions, at each date, we choose the
longest maturity for the American options and choose aetikfor an American put option that defines
the unit recovery claim. Based on the bid and ask quotes oAitherican put, we obtain both a bid and
an ask on the unit recovery claim. From the CDS market, we dosvert the CDS quotes at fixed times-
to-maturity (from one to five years) to unit recovery claingng (38). Then, we linearly interpolate the
unit recovery claim values across maturities to obtain tireesponding unit recovery claim that matches the
option maturity. The unit recovery claim value from the CD&rket is one mid value. Table 7 reports the
summary statistics of the unit recovery claim mid quote ioleté from the options market)C) and that from
the CDS marketl{°®), as well as their cross-correlations) @nd the results from regressibf andU°®. The

cross-correlations and the R-squares from the level reigies are both high. The slope coefficients are all
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positive. The-statistics on the slope coefficients are against the nplbthesis of one.

Figure 4 plots in solid lines the time series of the bids arie af the unit recovery claim synthesized
from American puts. The dashed line represents the regrefsirom the unit recovery value from the CDS
market. For AMR, EK, F, GM, and GT, the fitted value from the Cin&rket almost always falls within the
bid-ask range of the American puts, indicating that the tveskats are largely integrated. The matching for

CTB, DDS, and KBH are poorer.
[Fig. 4 about here.]

Similar to the predictive regressions in (37) on defaultoatalities, we also investigate whether the devi-
ations between the two markets can predict future movenienit® unit recovery claims obtained from the
American puts,

U ar = 0+ B (U —bUP) +aar, (39)

where we fix the cointegrating coefficient to that obtainedfithe level regression in Table 7. Table 8 reports
the results from the predictive regression over three bogzat one, seven, and 30 days. As expected, the
slope coefficients are all strongly negative. The R-squiak@ease with the prediction horizon. These results
suggest that we can use the linkages between the two maokmisdict the movements in prices of American

puts.

5. Alternative linkages

We have proposed a simple robust linkage between CDS spagad&merican put options on the stock
of the same reference company. Much of the research in #ratlire has focused on the structural linkage
between equity and debt markets following Merton (1974)pwégards equity as a call option on the firm
value,

Eo = AoN(d1) — De ""N(dy), (40)
with
g — INAg/D+1T + %oiT’ g InAg/D+1T — %0§T7
oavVT oavT

whereEp denotes the time-0 equity valudg denotes the firm valud) the book value of debt, anadl the

(41)

volatility on the return of the firm. In particulaN(d,) represents the risk-neutral probability that the call
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option will finish in the money and hence the firm will not defadherefore,Q" = 1 — N(d,) denotes the
risk-neutral probability of default, where the superscripreflects the fact that this probability is obtained

from the Merton'’s firm value approach.

In order to compare our approach with a widely used standeedlso perform a simple implementation
of this model to compute risk-neutral default probabiéitiét one-, two-, and three-year maturities. In our
implementation, we take the stock price as the per shargéyegpliie, and net debt per share as the face value
of debt. We take an implied volatility from the stock optiomsirket as the equity return volatilityez, from
which we solve for the firm valu&g and firm volatility o, from the following two equations using a numerical
procedure,

Eo = AoN(d;) —De ""N(d2), o = N(d;)oaAo/Eo, (42)

where the second equation is a result of I1td’'s lemma.

To extractog from stock options prices, we start with the implied voltidk provided by OptionMetrics,
which computes the implied volatility based on a binomiaktto adjust for the early exercise premium of
the American options. Then, at each date and maturity, wlenpelocal quadratic regression of the implied
volatility on a standardized moneyness measdre; (INEg/K)/Vov/T, whereK denotes the strike of the
option andVy denotes an average implied volatility estimate acrosstakes. From the local quadratic
regression, we obtain both an at-the-money implied vilagind an out-of-the-money put implied volatility
atd = —1, so that when log price relatives are normally distributeé log strike is one standard deviation
below the expectation of the log price at expiry. We lineamtgrpolate the total variance at the two moneyness
levels to obtain implied volatility estimates at the threedl time-to-maturities, with which we compute the

default probabilities.

The use of at-the-money implied volatility is a popular a&oin empirical studies given the higher liquid-
ity of near-the-money options and the role of at-the-momeplied volatility as a proxy for the risk-neutral
expected value of return volatility (Carr and Wu (2006)).r@liernative choice of an out-of-the-money put
implied volatility is motivated by our robust linkage resthat shows that far out-of-the-money American
put options can be used to synthesize a credit insuranceacoihat pays one dollar at default and zero
otherwise. Accordingly, the implied volatility of such aptan should contain credit risk information that
goes beyond the Merton structural model. Neverthelesdigiadity concerns, we do not go to the extremely
far out-of-the-money strik&1, which we have defined earlier as the lowest strike with neno-bid option

guotes. Instead we choose a one-standard deviation anitesdich usually generates liquid option quotes
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while also revealing partially the credit information erdded in our earlier exercise. We empirically inves-
tigate whether incorporating such an extra layer of creddrimation helps improve the structural model in

generating more realistic default probability predicion

Table 9 reports the summary statistics of the default pritibeb computed from this structural model us-
ing out-of-the-money stock option implied volatility indHeft panel and at-the-money stock option implied
volatility in the right panel. The last column under eachglaeports the cross-correlation with the default
probability computed from the CDS spread. When we compa estiistics in the two panels, we find that
the probabilities computed using out-of-the-money putlietpvolatility generates higher mean default prob-
ability estimates and also higher cross-correlation egésiwith the CDS-implied default probabilities. The
higher cross-correlations are expected, as the out-efdibreey put implied volatility contains the informa-
tion in the American put that we have used to replicate a tieslirance contract. The higher mean default
probability estimates indicate that the out-of-the-mopayimplied volatility is on average higher than the at-
the-money implied volatility, a reflection of the well-knovimplied volatility skew pattern, when the implied

volatility is plotted against moneyness at the same maturit

Figure 5 plots the cross-correlation estimates in the tpeeeels on the left hand side as a function of
the mean default probabilities computed from CDS spreatls. circles (data) and the solid lines (smoothed
fitting) are for the default probabilities computed from -afitthe-money implied volatilities. The diamonds
(data) and dashed lines (smoothed fitting) are from at-toeay implied volatilities. First, all lines are up-
ward sloping. The cross-correlations between the defaoltgbilities increase as the mean default probability
level increases. This result is similar to the relationshgfound for values of unit recovery claims synthe-
sized from American puts and from CDS, which show higheredation for companies with higher default
probabilities. Second, the solid line almost always stdys/a the dashed line within each panel, suggesting
that the default probability computed from out-of-the-rapimplied volatilities generates higher correlations
with the CDS market than does the default probability coragditom at-the-money implied volatilities. This
result in part reveals the additional information conteinbwt-of-the-money put options as suggested by our

robust linkage results.

[Fig. 5 about here.]

In the three panels on the right hand side of Figure 5, we pitriean differences in default probabilities

between those from the Merton approadh) and that from the CDS spread®9. Again, the circles
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(data) and the solid lines (smoothed fitting) are for the ulefarobabilities computed from out-of-the-money
implied volatilities. The diamonds (data) and dashed ligg@soothed fitting) are from at-the-money implied
volatilities. The two different types of implied volatiits generate different patterns for the mean biases.
Using at-the-money implied volatility, the Merton apprbacsually generates default probability estimates
lower than that computed from the CDS market. Furthermdnis, riegative bias increases with increasing
default probabilities. In contrast, when we use the outhefHmoney implied volatility, the mean bias is
negative when the default probability is low, but the biasdmes positive when the default probability is
high. The literature has often found that the Merton apgragmerates lower default probabilities than those
obtained from corporate bonds or the CDS maPketowever, our exercise shows that this negative bias no
longer exists for high-default firms when we use out-of4therey implied volatility as the input for stock
return volatility. By using information in out-of-the-mew put options, we incorporate the credit information

not captured by the stylized Merton model.

6. Concluding remarks

Structural models of default have the property that priatdtault, the firm value is random and bounded
below by the default barrier. They also have the property dftar default, stock prices have little volatility,
if any. We develop a class of reduced-form models for thekspoice which is consistent with these observa-
tions. Prior to default, stock prices are bounded below bgsitipe constanB < &, while after default, they
are bounded above by another constart B. When the default corridofA, B) exists, risk-neutral default
probabilities can be directly expressed in terms of verspaeads of American puts struck between these
levels. Furthermore, a vertical spread of American putamgtiscaled by the difference in strikes has the
same payoff as a standardized credit claim paying one datlidefault if this event occurs before the options
expire, and paying zero otherwise. The replication is samvgsid robust to the details of the stock price dy-
namics before and after default. Since the two positionsgfahe same amount at the same random time,

the replication is also robust to the dynamics of interegtsrand default arrival rates.

We use the value of the American put spread to infer the rigkval default probabilities and compare
them to those inferred from the credit default swap (CDS ketarCollecting data from both markets on eight

reference names with significant default probabilities, identify a strong correlation between the default

8See, for example, Huang and Huang (2003), Eom, Helwege, aaddH(2004), Elton, Gruber, Agrawal, and Mann (2001), and
Collin-Dufresne, Goldstein, and Helwege (2003).
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probabilities inferred from American put spreads and frtwose inferred from CDS spreads. We also find

that deviations between the two estimates help predictéutvovements in both markets.

Our identified linkage provides fertile ground for futuresearch. On the theoretical side, research effort
should be directed towards specifying the trading stratbgy should be enacted when arbitrage arises. In
particular, there is an issue of how to deal with an unexedcghort put in the event of default, particularly
when the cost of buying this put is above its exercise valweseRrch effort should also be directed towards
further relaxation of the assumptions. In particular, tfieat of random bond recovery rates and (discrete)
dividends needs to be addressed. On the empirical side, mathis needed in investigating how the put

strikes should be chosen and how to deal with maturity mishest between the two markets.
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Appendix A. Conditional transitional probability density function under the
toy DDD mod€

Conditional on no default up to timte we can rewrite the dynamics in equation (5) as,
S =R(0)"+ [B-R(0)e ™M +(5-B)e™MG, te[0,T] (A1)

Solving forG, we have
S —{R(0)e" + [B-R(0)]e"™M}

G = (S) _ B)e(r+)\)t (A2)
Evaluating at =T leads to
Sr_— {R+[B—R(0)&" T}
Gt = S BT . (A3)
Taking the ratio of (A3) to (A2) implies
Gr (Sr_ — R)ef(rH\)(T—t) - B— R(O)]e(r+)\)t . ad
G S - {R(0)€ 4 [B— R(0)]er Mt} =h(Sr-%-). (A%
Since%{—T = W -W)-0*(T-1)/2, the ratio on the left hand side is lognormally distributed:
2T — 2
@{f; dh} expl “”h”;noz(t)/z]tgsv U2} 4h= e(hydh (A5)

LetK(t) = R(0)e" + [B— R(0)]e™Mt. ForK > K(T) andS> K(t), the transition probability density conditional on

surviving toT is

QfSredK|§=SNr =0} = Q{% e dh(K,S)} %KK’S)
e () (T-1)
= ((h(K,9)) S—{R(0)e + [B— R(0)]el+Mt} (AB)
exp{—[Inh(K,S) + 0%(T —1)/2]/ov/T —1]?/2} 1
- (A7)
2mo?(T —t) K —R—[B— R(0)]e AT
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Table 1

List of companies used in our study
Entries list the equity ticker, cusip, and the name of the gamies that are used in our study.

Equity Ticker Cusip Number Company Name

AMR 00176510 AMR Corp

CTB 21683110 Cooper Tire & Ribber

DDS 25406710 Dillard’s Inc.

EK 27746110 Eastman Kodak Co

F 34537086 Ford Motor Co

GM 37044210 General Motors Corp

GT 38255010 Goodyear Tire & Rubber Co
KBH 48666K10 KB Home
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Table 2

Summary statistics of default probabilities

Entries report the mean, standard deviation (Std), mininiMin), maximum (Max), daily autocorrelation
(Auto) of companies’ one-year default probabilities (imgentage points) estimated from the American put
spreads in the left panel and from the CDS spreads in the pgheél. The left panel reports the cross-
correlation p) between the two time series for each company.

Ticker From American put spreads From CDS spreads p
Mean Std  Min Max Auto Mean Std Min Max Auto

One-year default probabilities:
AMR  5.199 3.240 1.083 14.603 0.973 12.095 9.317 1.877 30.11896 0.852
CTB 2.817 1.369 1.135 10.006 0.891 1.865 1.580 0.133 8.919880. 0.744
DDS 2.058 0.911 0.578 4.194 0.946 1.010 0.654 0.118 2.84160.9 0.696
EK 2.056 0.950 0.534 6.151 0.966 1.014 0.511 0.250 2.713 70.980.762
F 4655 1.841 1.092 10.693 0.953 5.386 3.588 1.120 15.211930.9 0.831
GM 3.871 2.943 0.920 14.552 0.974 7.333 6.384 1.242 22.768960. 0.944
GT 3.180 1.432 0.669 8.382 0.966 2351 1.150 0.263 6.288 80.980.886
KBH 1.233 0.599 0.349 3.688 0.942 0.815 0.398 0.205 2.683660.9 0.207

Two-year default probabilities:
AMR 10.755 6.324 2.197 28.449 0.981 26.183 16.795 5.911 882.10.997 0.937
CTB 5.384 2.582 2.144 19.010 0.885 4932 3396 0.896 17.348930 0.688
DDS 4246 1534 1.353 7.491 0.924 3.210 1517 1.095 6.828000.9 0.665
EK 4.166 1.769 1.461 11.925 0.950 3.397 1.487 1.244 7.795910.9 0.854
F 9.204 3.764 2.065 20.242 0.954 14336 7.239 3.893 28.1040. 0.850
GM 8.694 6.251 2.669 27.343 0.983 17.489 11.466 5.265 41.79996 0.935
GT 6.451 2.590 1.270 13.383 0.970 6.546 2.558 1.597 13.88%00. 0.853
KBH 3.117 1.059 1.063 5.794 0.940 2517 0974 1.017 6.329750.9 0.352

Three-year default probabilities:
AMR 15.661 8.819 3.277 39.477 0.980 38.026 19.427 12.5713721.0.997 0.957
CTB 7.953 3.737 3.198 27.114 0.885 9.072 5.329 2.395 25.03®50 0.651
DDS 6.298 2.250 2.023 11.023 0.919 7.184 2215 3922 11.9/900 0.622
EK 6.133 2.571 1.941 17.342 0.943 7.098 2524 3.108 13.839920. 0.862
F 13.428 5.408 3.021 28.771 0.953 24.482 8.663 7.485 39.04920 0.850
GM 12.787 8.703 3.977 38.146 0.980 27.504 12.777 9.702 51.94995 0.879
GT 9.534 3.776 1.899 19.387 0.968 12.958 4.534 3.971 24.68020 0.847
KBH 4891 1.933 1.590 9.461 0.925 5.242 1.763 2.289 12.559790. 0.321
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Table 3

Regressing default probabilities from American put spsea default probabilities from the CDS

Entries report the estimates, Newey-Westatistics (in parentheses), and R-squaR® {rom regressing
the one-year default probabilities computed from Ameripahspreads on the one-year default probabilities
computed from the CDS spreads written on the same referamapany,

QP =a+bQf +a.

Thet-statistics of the intercept are computed against the pplbthesis of zero and thestatistics of the slope
are computed against the null hypothesis of one.

Ticker Intercept Slope R?

One-year default probabilities:

AMR 1.614 (5.27) 0.296 (-16.41) 0.726
CTB 1.614 (10.07) 0.645 (-4.87) 0.554
DDS 1.078 (6.43) 0.970 (-0.22) 0.484
EK 0.622 (3.05) 1.415 (2.16) 0.580
F 2.359 (7.81) 0.426 (-13.72) 0.690
GM 0.681 (3.47) 0.435 (-17.11) 0.891
GT 0.587 (3.21) 1.103 (1.34) 0.785
KBH 0.979 (5.12) 0.312 (-4.11) 0.043

Two-year default probabilities:

AMR 1.521 (3.54) 0.353 (-24.75) 0.877
CTB 2.804 (5.88) 0.523 (-4.99) 0.473
DDS 2.088 (5.31) 0.672 (-3.42) 0.442
EK 0.716 (2.29) 1.016 (0.17) 0.729
F 2.871 (3.96) 0.442 (-15.46) 0.722
GM -0.223 (-0.36) 0.510 (-11.22) 0.874
GT 0.798 (1.77) 0.864 (-1.99) 0.728
KBH 2.153 (5.29) 0.383 (-4.26) 0.124

Three-year default probabilities:

AMR -0.866 (-1.09) 0.435 (-23.84) 0.917
CTB 3.812 (4.52) 0.457 (-5.71) 0.424
DDS 1.760 (2.15) 0.632 (-3.44) 0.387
EK -0.098 (-0.21) 0.878 (-1.77) 0.743
F 0.445 (0.42) 0.530 (-12.85) 0.722
GM -3.689 (-2.28) 0.599 (-5.67) 0.773
GT 0.399 (0.63) 0.705 (-5.81) 0.717
KBH 3.047 (3.43) 0.352 (-3.92) 0.103
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Table 4

Predicting future movements at daily horizon based on emedket deviations

Entries report the estimates, Newey-Westatistics (in parentheses), and R-squaRs3 ffom the following
regressions,

AQP, p =@ +0°(QP —cQp) + & pr,  AQE,n = @ +b°(QF — cQF) + €,

whereAQy o denotes future changes over a one-day horizon, which adgécped by the deviations between
the estimates from the two markets.

Ticker a° b R2 ac he R2 Cc

One-year default probabilities:
AMR 0.139 (2.46) -0.095 (-2.38) 0.047 -0.060 (-1.38) 0.0221.40) 0.003 0.304 (10.19)
CTB  0.381 (4.62) -0.229 (-5.86) 0.108 -0.021 (-0.93) 0.0141.38) 0.003 0.617 (11.95)
DDS 0.106 (2.57) -0.097 (-3.08) 0.045 -0.007 (-0.53) 0.008.7¢) 0.003 0.931 (6.86)
EK 0.049 (2.93) -0.080 (-4.27) 0.042 -0.003 (-0.65) 0.005.880 0.001 1.441 (8.49)
F 0.342 (4.28) -0.140 (-4.34) 0.069 0.036 (0.79) -0.013 {#Q. 0.001 0.413 (11.25)
GM 0.118 (2.87) -0.165 (-5.51) 0.061 -0.075 (-3.15) 0.109 .5¢3 0.041 0.431 (23.99)
GT 0.076 (3.58) -0.157 (-6.20) 0.082 -0.007 (-0.80) 0.011.960 0.002 1.136 (18.80)
KBH 0.058 (2.19) -0.060 (-2.14) 0.030 0.001 (0.10) 0.002 440. 0.000 0.353 (1.37)

Two-year default probabilities:
AMR 0.176 (3.04) -0.132 (-2.43) 0.066 -0.074 (-1.38) 0.0120.49) 0.001 0.353 (19.94)
CTB  0.606 (5.06) -0.207 (-6.14) 0.099 -0.008 (-0.27) 0.00%0.68) 0.001 0.499 (9.85)
DDS 0.286 (4.18) -0.130 (-4.37) 0.062 -0.014 (-0.71) 0.008.19) 0.003 0.641 (7.42)
EK 0.126 (3.16) -0.170 (-4.13) 0.083 -0.004 (-0.43) 0.007 .860 0.001 1.009 (16.34)
F 0.464 (2.90) -0.154 (-3.33) 0.078 0.012 (0.27) -0.001 13Q. 0.000 0.434 (13.91)
GM  -0.022 (-0.44) -0.098 (-4.11) 0.038 0.019 (0.40) 0.066 .10 0.034 0.510 (18.41)
GT 0.047 (1.71) -0.099 (-4.37) 0.050 -0.011 (-0.52) 0.009.86Q 0.001 0.904 (12.11)
KBH 0.148 (4.02) -0.069 (-3.96) 0.034 -0.002 (-0.07) 0.0040.39) 0.000 0.390 (2.30)

Three-year default probabilities:
AMR -0.216 (-1.87) -0.203 (-3.57) 0.102 -0.016 (-0.28) @04(1.62) 0.008 0.435 (32.04)
CTB 0.764 (4.74) -0.191 (-5.83) 0.092 -0.007 (-0.17) 0.0040.58) 0.001 0.436 (8.65)
DDS 0.254 (3.47) -0.125 (-4.15) 0.060 -0.009 (-0.42) 0.007..12) 0.003 0.596 (6.46)
EK -0.003 (-0.08) -0.206 (-4.86) 0.099 0.005 (0.36) 0.010.5@) 0.002 0.867 (18.68)
F 0.123 (1.23) -0.154 (-3.62) 0.077 0.014 (0.34) 0.002 (0.22000 0.518 (14.10)
GM  -0.234 (-2.62) -0.069 (-3.15) 0.030 0.082 (1.19) 0.022 .5¢) 0.011 0.588 (10.46)
GT -0.002 (-0.05) -0.098 (-4.24) 0.048 -0.011 (-0.43) 0.0qew.84) 0.001 0.731 (11.40)
KBH 0.250 (3.45) -0.083 (-3.76) 0.042 0.002 (0.06) 0.003 300. 0.000 0.363 (2.40)
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Table 5

Predicting future movements at weekly horizon based orsemarket deviations

Entries report the estimates, Newey-Westatistics (in parentheses), and R-squaRs3 ffom the following
regressions,

AQP, p =@ +0°(QP —cQp) + & pr,  AQE,n = @ +b°(QF — cQF) + €,

whereAQ, o; denotes future changes over a one-week horizon, which adécped by the deviations between
the estimates from the two markets.

Ticker a° b R2 ac he R2 Cc

One-year default probabilities:
AMR 0.138 (1.48) -0.137 (-1.88) 0.064 -0.216 (-1.30) 0.0620.90) 0.007 0.325 (10.68)
CTB  0.672 (3.50) -0.398 (-3.39) 0.141 -0.160 (-1.98) 0.10&.79) 0.026 0.651 (14.10)
DDS 0.206 (2.69) -0.203 (-3.48) 0.100 -0.046 (-1.07) 0.048.30¢) 0.020 1.033 (11.54)
EK 0.201 (3.25) -0.245 (-3.82) 0.115 0.002 (0.07) 0.001 40.00.000 1.255 (12.11)
F 0.803 (4.14) -0.293 (-4.33) 0.135 0.201 (1.03) -0.065 @ ). 0.005 0.372 (12.05)
GM 0.113 (1.15) -0.219 (-3.02) 0.053 -0.196 (-1.68) 0.463 .983 0.119 0.465 (34.92)
GT 0.137 (2.70) -0.324 (-5.88) 0.149 -0.046 (-1.16) 0.086.50) 0.018 1.156 (24.62)
KBH 0.201 (3.04) -0.160 (-3.26) 0.081 0.010 (0.29) 0.003 1¢Q. 0.000 0.002 (0.01)

Two-year default probabilities:
AMR 0.223 (2.11) -0.253 (-2.80) 0.126 -0.354 (-1.71) 0.0600.68) 0.005 0.363 (23.63)
CTB  1.131 (3.80) -0.355 (-3.43) 0.128 -0.041 (-0.23) 0.0220.50) 0.002 0.492 (10.38)
DDS 0.584 (4.64) -0.262 (-5.50) 0.130 -0.079 (-1.06) 0.04QL.56) 0.012 0.645 (10.63)
EK 0.347 (3.63) -0.428 (-5.40) 0.198 0.003 (0.05) 0.015 ©0.30.001 1.002 (25.31)
F 0.982 (3.21) -0.295 (-3.78) 0.142 0.006 (0.03) 0.018 (9.3®001 0.421 (15.33)
GM  -0.107 (-0.75) -0.134 (-2.10) 0.030 0.213 (0.93) 0.201.109 0.050 0.547 (21.50)
GT 0.042 (0.46) -0.253 (-4.10) 0.122 -0.041 (-0.44) 0.074.346) 0.014 0.951 (18.65)
KBH 0415 (4.08) -0.181 (-4.37) 0.088 0.024 (0.19) 0.002 040. 0.000 0.316 (2.61)

Three-year default probabilities:
AMR -0.517 (-2.06) -0.348 (-3.91) 0.152 -0.071 (-0.23) @18(1.76) 0.035 0.441 (36.73)
CTB  1.477 (3.96) -0.326 (-3.56) 0.119 -0.022 (-0.09) 0.0180.39) 0.001 0.417 (8.89)
DDS 0.527 (3.59) -0.245 (-5.16) 0.121 -0.067 (-0.78) 0.039.4¢) 0.013 0.589 (8.88)
EK 0.022 (0.22) -0.516 (-6.42) 0.240 0.026 (0.42) 0.031 20.90.003 0.868 (29.50)
F 0.352 (1.49) -0.287 (-3.84) 0.133 0.071 (0.36) 0.037 (0.82003 0.508 (16.18)
GM  -0.410 (-1.62) -0.102 (-2.15) 0.029 0.382 (1.26) 0.079 .40) 0.021 0.617 (12.09)
GT -0.080 (-0.62) -0.238 (-3.64) 0.111 -0.027 (-0.23) 0.040.93) 0.006 0.753 (16.25)
KBH 0.631 (4.15) -0.221 (-4.70) 0.111 0.024 (0.14) 0.009 2@0. 0.001 0.377 (3.73)
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Table 6

Predicting future movements at a monthly horizon based assemarket deviations
Entries report the estimates, Newey-Westatistics (in parentheses), and R-squaRs3 ffom the following
regressions,

AQP, p = @ +Db° (QF — cQ¥) + &, ar

AQE, p = @ +b°(QP — cQf) + €y

whereAQ ., ar denotes future changes over a 30-day horizon, which arécpeddoy the deviations between
the estimates from the two markets.

Ticker ae b° R? ac b® R? c
One-year default probabilities:
AMR 0.382 (1.31) -0.365 (-1.75) 0.149 -0.779 (-1.24) 0.0610.20) 0.001 0.290 (12.58)
CTB  1.032 (3.16) -0.213 (-2.76) 0.135 0.762 (2.07) -0.17®.¢3) 0.102 -0.866 (-3.14)
DDS 0.284 (1.94) -0.314 (-2.73) 0.114 -0.173 (-1.23) 0.165.20) 0.053 1.069 (15.17)
EK 0.817 (3.65) -0.790 (-4.98) 0.349 0.132 (1.22) -0.136 .Q1) 0.057 1.047 (18.28)
F 2.302 (3.84) -0.594 (-3.88) 0.271 1.846 (2.51) -0.479 422. 0.090 0.192 (6.11)
GM 0.038 (0.12) -0.081 (-0.48) 0.003 0.183 (0.34) 1.012 23.60.157 0.545 (32.88)
GT 0.500 (2.61) -0.653 (-2.95) 0.166 -0.264 (-1.91) 0.208.18) 0.022 0.980 (25.07)
KBH 0.612 (3.57) -0.255 (-3.60) 0.173 0.333 (1.95) -0.1372.22) 0.095 -1.352 (-6.35)
Two-year default probabilities:
AMR 0901 (2.98) -0.659 (-5.52) 0.285 -0.988 (-1.50) -0.1850.89) 0.011 0.334 (29.61)
CTB  2.711 (3.20) -0.579 (-3.06) 0.198 0.424 (0.46) -0.0970.%0) 0.008 0.210 (4.34)
DDS 1.108 (3.32) -0.418 (-4.53) 0.148 -0.457 (-1.68) 0.164..79) 0.044 0.488 (9.40)
EK 1.244 (5.27) -0.916 (-10.68) 0.371 0.220 (1.22) -0.165..7t) 0.031 0.842 (27.91)
F 3.237 (4.10) -0.448 (-4.32) 0.214 1.666 (1.24) -0.212 43). 0.025 0.181 (4.47)
GM 0.139 (0.31) 0.031 (0.21) 0.001 2.200 (2.16) 0.750 (3.40.163 0.652 (30.01)
GT 1401 (2.23) -0.607 (-3.68) 0.198 0.055 (0.09) -0.103.§5Q0 0.006 0.618 (14.35)
KBH 1374 (3.13) -0.252 (-3.14) 0.149 1480 (2.30) -0.2612.60) 0.177 -0.954 (-6.06)
Three-year default probabilities:
AMR -0.835 (-1.52) -0.771 (-6.96) 0.262 -1.349 (-1.28) @®@05(0.32) 0.001 0.420 (33.64)
CTB 3.605 (3.07) -0.616 (-3.00) 0.208 0.114 (0.09) -0.0130.97) 0.000 0.283 (7.29)
DDS 1.382 (3.13) -0.389 (-4.69) 0.148 -0.488 (-1.30) 0.132.5Q) 0.034 0.375 (6.42)
EK 0.924 (3.51) -1.002 (-11.39) 0.403 0.156 (0.70) -0.153L.77) 0.022 0.742 (30.61)
F 4320 (3.93) -0.314 (-3.88) 0.177 2.976 (1.64) -0.201 £6). 0.052 0.040 (0.55)
GM  -0.048 (-0.05) -0.009 (-0.08) 0.000 4496 (2.24) 0.341 .58 0.121 0.917 (16.94)
GT 1.319 (1.87) -0.635 (-3.70) 0.221 0.004 (0.01) -0.136.96Q0 0.010 0.562 (15.28)
KBH 1.783 (4.03) -0.626 (-5.06) 0.308 0.179 (0.31) -0.0190.(4) 0.000 0.407 (7.31)
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Table 7

Summary statistics of unit recovery claims

Entries report the mean, standard deviation (Std), minirfMim), maximum (Max) of unit recovery claims extracted foetAmerican put options
(U°) and from CDS markets®) as well as their cross-correlatiors) @nd co-movement regressions.

Ticker ue uc P U?=a+bUf+ &
Mean Std Min Max Mean Std Min Max a b R

AMR 0.116 0.073 0.020 0.300 0.264 0.164 0.055 0.566 0.934 070.0 (1.21) 0.413 (-17.71) 0.872
CTB 0.087 0.039 0.020 0.205 0.053 0.042 0.006 0.217 0.364 690.0 (5.80) 0.339 (-4.95) 0.133
DDS 0.063 0.026 0.022 0.130 0.033 0.018 0.009 0.079 0.716 280.0 (4.36) 1.046 (0.28) 0.513
EK 0.043 0.019 0.013 0.090 0.038 0.019 0.011 0.084 0.868 10.01(3.83) 0.836 (-2.53) 0.754
F 0.103 0.044 0.020 0.235 0.138 0.066 0.035 0.274 0.804 0.022.81) 0.531 (-7.77) 0.646
GM 0.085 0.060 0.030 0.270 0.167 0.105 0.050 0.406 0.938 060.0(-0.93) 0.543 (-11.62) 0.880
GT 0.075 0.034 0.013 0.175 0.074 0.034 0.012 0.149 0.865 00.01(2.06) 0.875 (-1.42) 0.748

KBH 0.048 0.038 0.010 0.160 0.026 0.011 0.009 0.049 0.777 028). (-2.28) 2.786 (3.25) 0.604




Table 8

Predicting future movements on unit recovery claims basecrass-market deviations

Entries report the estimates, Newey-Westatistics (in parentheses), and R-squafR® from the following regression that predicts future
movements in the unit recovery claim synthesized by Amarmats [U°) based on its deviations from the CDS market valuations,

AUS 5 =0+ B UL —DbUYS) +a,

where forecasting horizon€\f) are at one, seven, and 30 days and the cointegrating cenffiti are obtained from the level regressions in
Table 7.

Ticker One days Seven days 30 days
a B R? a B R? a B R?

AMR -0.000 (-0.08) -0.070 (-2.75) 0.034 -0.001 (-0.99) &1 (-2.48) 0.079 -0.006 (-1.20) -0.598 (-3.76) 0.241
CTB 0.001 (1.51) -0.015 (-1.44) 0.005 0.005 (1.33) -0.0561.26) 0.015 0.012 (1.17) -0.144 (-1.07) 0.029
DDS 0.000 (1.81) -0.022 (-2.66) 0.012 0.002 (1.53) -0.0882.85) 0.052 0.004 (1.26) -0.290 (-3.10) 0.159
EK 0.001 (4.84) -0.093 (-4.36) 0.053 0.003 (5.12) -0.297 .03 0.172 0.011 (4.46) -0.969 (-9.93) 0.422
F 0.002 (3.23) -0.077 (-2.89) 0.050 0.006 (2.74) -0.201 33. 0.111 0.017 (2.72) -0.571 (-3.34) 0.227
GM -0.001 (-1.60) -0.122 (-3.42) 0.051 -0.001 (-0.71) -@1€-2.65) 0.040 -0.002 (-0.41) -0.226 (-1.03) 0.021
GT 0.000 (1.00) -0.063 (-3.66) 0.032 0.001 (0.53) -0.184 .563 0.077 0.001 (0.22) -0.599 (-2.33) 0.192
KBH -0.000 (-1.14) -0.008 (-1.29) 0.002 -0.000 (-0.32) @M0 (-0.10) 0.000 -0.001 (-0.29) 0.043 (0.53) 0.007




Table 9

Default probabilities estimated from a structural model

Entries report the mean, standard deviation (Std), mininiMin), maximum (Max), daily autocorrelation
(Auto) of companies’ one-year default probabilities (imrqantage points) estimated from Merton (1974)'s
structural model. The computations uses the stock prideeggdr share equity value and net debt per share as
the per share debt face value, and computes the firm valumagseaquality between the market and the face
value of the debt. To compute firm volatility, the left panska one-standard deviation out-of-money stock
option implied volatility as input whereas the right pansés at-the-money stock option implied volatility as
input.

Ticker From out-of-money option From at-the-money option
Mean Std  Min Max Auto p Mean Std  Min Max Auto p

One-year default probabilities:
AMR  9.802 8.058 0.311 33.791 0.994 0.797 3.308 3.259 0.0455683 0.989 0.775
CTB 0.112 0.367 0.000 2.730 0.940 0.770 0.019 0.080 0.000 950.10.888 0.699
DDS 0.033 0.042 0.000 0.198 0.957 0.651 0.002 0.006 0.000 480.0.884 0.188
EK 0.001 0.004 0.000 0.036 0.939 0.677 0.000 0.000 0.000 20.@902 0.619
F 3.235 2.588 0.003 14.763 0.976 0.854 0.860 0.857 0.000 25.74966 0.778
GM 7.731 9.970 0.017 41.668 0.993 0.972 2.574 4.270 0.0006580.0.989 0.925
GT 0.848 0.791 0.003 4.222 0.977 0.812 0.113 0.140 0.000 90.92968 0.713
KBH 0.071 0.112 0.000 0.588 0.980 0.019 0.010 0.022 0.000 310.10.966 -0.037

Two-year default probabilities:
AMR 28.704 18.392 2.478 67.296 0.996 0.943 12.353 9.776 20.73.588 0.994 0.910
CTB 1.066 2.273 0.000 13.112 0.975 0.818 0.279 0.729 0.0002145.0.963 0.802
DDS 0.812 0.703 0.001 2.784 0.983 0.687 0.131 0.137 0.000 050.©.971 0.599
EK 0.135 0.267 0.000 1.618 0.985 0.801 0.011 0.029 0.000 00.20971 0.697
F 15.745 8.577 0.329 38.120 0.987 0.863 6.611 4.397 0.045%369.0.986 0.847
GM 22.611 20.341 1.151 66.385 0.991 0.986 9.616 11.711 0.#P2363 0.993 0.970
GT 6.058 3.477 0.447 19.845 0.983 0.879 1587 1.156 0.058 827.2.978 0.821
KBH 1335 1.122 0.009 5.095 0.989 0.340 0.300 0.381 0.000 801.8.988 0.203

Three-year default probabilities:
AMR 41376 21.973 6.651 81.109 0.996 0.959 21.152 14.18223.562.169 0.994 0.933
CTB 2.702 4.681 0.000 23.995 0.981 0.823 0.882 1.813 0.0006970 0.977 0.828
DDS 2,702 1916 0.031 7.508 0.985 0.655 0.677 0.577 0.001 522.8.980 0.632
EK 0.652 0.992 0.000 5.285 0.988 0.825 0.087 0.183 0.000 01.@r982 0.732
F 26.971 12.132 1.438 55.102 0.986 0.861 13.424 7.491 0.328/23 0.986 0.836
GM 28.763 18.319 3.612 69.028 0.969 0.860 16.605 16.903 80.89.480 0.994 0.943
GT 12.838 6.038 1.975 32.946 0.981 0.861 4.457 2.563 0.3870925 0.980 0.802
KBH 4081 2.614 0.136 12.174 0.985 0.549 1.220 1.121 0.0085714.0.989 0.447
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Fig. 1. Cross correlations as function of mean default pooitias.
The graphs show the relation between the mean default piitjpdével (computed from the CDS market)
and the cross-correlation estimates between the defaabapilities computed from the two markets. The
dots are data points. The lines are local-linear smoothtagHEiach panel represents one maturity.
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Time to maturity: 1 year
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Fig. 2. Mean biases in default probabilities.
The dots in each panel represent the mean difference betihveatefault probabilities estimated from the
options market and that from the CDS market. The solid liresl@al-linear smoothing fits. Each panel
represents one maturity.
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Fig. 3. Comparing the time series of one-year default pritiiab computed from two markets.
The solid line in each panel denotes the time series of thengsitral default probabilities estimated from the
American put spreads, and the dashed line represents theséiries estimated from the CDS spreads. Each
panel represents one reference company and one maturity.
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Fig. 4. Tracing the unit recovery values.
The solid lines are the market values of the unit recovernyrcynthesized from American put options. The
dashed lines are the estimated values from the CDS quoted basconstant interest rate and default arrival
rate assumption and linear interpolation on the CESS quotes.
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Fig. 5. Cross correlations and mean biases as function afi mhefault probabilities.

The graphs on the left hand side show the relation betweemt#an default probability level (computed
from the CDS market) and the cross-correlation estimatesdss the default probabilities computed from
the two markets. The graphs on the right hand side plot thenrddBerence in probability between the
structural approach and the CDS mark@f, — Q°, as a function of the mean default probability for each
firm. The dots (data) and solid lines (smoothed fitting) areedaon out-of-the-money implied volatilities.
The diamonds (data) and dashed lines (smoothed fitting)ees®doon at-the-money implied volatilities. Each
panel represents one maturity.
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